M1.Correct substitution ignoring powers of 10 in *hc* / λ

	C1
Photon energy = $3.0(3) \times 10^{-19}$ J	
Photon energy in eV = 1.9 eV gets 3 marks	
	A1
Conversion of -3.4 eV to J (5.44 × 10 ⁻¹⁹ seen)	
	C1
Answer –2.4 × 10 ⁻¹⁹ J (must have negative sign) –8 4(8 5) × 10 ⁻¹⁹ J gets 3 marks	
0.4(0.0) ** 10 ° 0 gets 0 marks	
	A1

[4]

1

1

1

1

1

M2.(a) Peak power = 107 / 108 mW and load resistance = 290 / 310 Ω \checkmark

Use of power = I^2R with candidate values \checkmark

0.0186 - 0.0193 A 🖌

(b) Area of cell = $36 \times 10^4 \text{ m}^2$ and solar power arriving = $730 \times (\text{an area}) \checkmark$

0.108 2.63 seen√

(c) energy of one photon =
$$\frac{hc}{\lambda}$$
 = 4.0 × 10⁻¹⁹ J \checkmark

Number of photons =
$$\frac{730 \times 36 \times 10^{-4}}{4.0 \times 10^{-19}} = 6.6 \times 10^{18} \text{ s}^{-1} \checkmark$$

(d) **Two** from

Intensity of the sun at the Earth's surface Average position of the sun Efficiency of the panel Power output of 1 panel Weather conditions at the installation= ✓ ✓

Allow other valid physics answers=

[10]

2

1

1

1

M3.(a) (i) absorbs enough energy (from the incident) electron(by collision) OR incident electron loses energy (to orbital electron) ✓ exact energy / 10.1((eV) needed to make the transition / move up to level 2 ✓ For second mark must imply exact energy

2

(ii) (use of $E_2 - E_3 = hf$ $-3.41 - 13.6 = 10.19 \checkmark$ energy of photon = $10.19 \times 1.6 \times 10^{-19} = 1.63 \times 10^{-18}$ (J) \checkmark $6.63 \times 10^{-34} \times f = 1.63 \times 10^{-18}$ $f = 2.46 \times 10^{15}$ (Hz) \checkmark (accept 2.5 but not 2.4) CE from energy difference but not from energy conversion

3

(iii) Ek =
$$1.7 \times 10^{-18} - 1.63 \times 10^{-18} \checkmark = 7.0 \times 10^{-20} \text{ J} \checkmark$$

- (iv) energy required is 12.09 eV / 1.9 × 10⁻¹⁸ ✓
 energy of incident electron is only 10.63 eV / energy of electron less than this (1.7 × 10⁻¹⁸ J) ✓
 State and explain must have consistent units i.e. eV or J
- (b) (i) Electrons return to lower levels by different routes / cascade / not straight to ground state ✓

1

2

2

(ii) 3 ✓
 n=3 to n=1 or n=3 to n=2 and n=2 to n=1 ✓
 no CE from first mark

[12]

- M4. (a) (i) when electrons/atoms are in their lowest/minimum energy (state) or most stable (state) they (are in their ground state) ✓
 - (ii) in either case an electron receives (exactly the right amount of) energy ✓
 excitation promotes an (orbital) electron to a higher energy/up a level ✓
 ionisation occurs (when an electron receives enough energy) to leave the atom ✓
 - (b) electrons occupy discrete energy levels \checkmark

and need to absorb an exact amount of/enough energy to move to a higher level \checkmark photons need to have certain frequency to provide this energy **or** e = hf \checkmark energy required is the same for a particular atom or have different energy levels \checkmark all energy of photon absorbed \checkmark

in 1 to 1 interaction or clear a/the photon and an/the electrons \checkmark

(c) energy =
$$13.6 \times 1.60 \times 10^{-19} = 2.176 \times 10^{-18}$$
 (J) \checkmark
 $hf = 2.176 \times 10^{-18} \checkmark$
 $f = 2.176 \times 10^{-18} \div 6.63 \times 10^{-34} = 3.28 \times 10^{15}$ Hz \checkmark 3 sfs \checkmark
4

M5. (a) (i) an electron/atom is at a higher level than the ground state (1) or electron jumped/moved up to another/higher level 1 (ii) electrons (or electric current) flow through the tube (1) and collide with orbiting/atomic electrons or mercury atoms (1) raising the electrons to a higher level (in the mercury atoms) (1) 3 (iii) photons emitted from mercury atoms are in the ultra violet (spectrum) or high energy photons (1) these photons are absorbed by the powder or powder changes frequency/wavelength (1) and the powder emits photons in the visible spectrum (1) incident photons have a variety of different wavelengths (1) max 3

(b) (i) (use of
$$E = hf$$
)
 $-0.26 \times 10^{-18} - 0.59 \times 10^{-18}$ (1) = $6.63 \times 10^{-34} \times f$ (1)
 $f = 0.33 \times 10^{-18}/(6.63 \times 10^{-34}) = 5.0 \times 10^{14}$ (Hz) (1)
(ii) **one** arrow between n = 3 and n = 2 (1) in correct direction (1)

[12]

2

[12]

PhysicsAndMathsTutor.com