M1.Correct substitution ignoring powers of 10 in $h c / \lambda$

Photon energy $=3.0(3) \times 10^{-19} \mathrm{~J}$
 Photon energy in eV $=1.9 \mathrm{eV}$ gets 3 marks

Conversion of -3.4 eV to $\mathrm{J}\left(5.44 \times 10^{-19}\right.$ seen $)$

Answer - $2.4 \times 10^{-19} \mathrm{~J}$ (must have negative sign)

$$
-8.4(8.5) \times 10^{-19} \mathrm{~J} \text { gets } 3 \text { marks }
$$

M2.(a) Peak power $=107 / 108 \mathrm{~mW}$ and load resistance $=290 / 310 \Omega \checkmark$

Use of power $=I^{2} R$ with candidate values \checkmark
$0.0186-0.0193$ A \checkmark
(b) Area of cell $=36 \times 10^{-4} \mathrm{~m}^{2}$ and solar power arriving $=730 \times($ an area $) \checkmark$

$$
\frac{0.108}{2.63} \operatorname{seen} \sqrt{ }
$$

0.041 (correct answer only; lose if ratio given unit) \checkmark
(c) energy of one photon $=\frac{h c}{\lambda}=4.0 \times 10^{-1 \mathrm{~J}} \mathrm{~J} J$

Number of photons $=\frac{730 \times 36 \times 10^{-4}}{4.0 \times 10^{-19}}=6.6 \times 10^{18} \mathrm{~S}^{-1} \checkmark$
(d) Two from

Intensity of the sun at the Earth's surface
Average position of the sun
Efficiency of the panel
Power output of 1 panel
Weather conditions at the installation=
$\checkmark \checkmark$
Allow other valid physics answers=

M3.(a) (i) absorbs enough energy (from the incident) electron(by collision) OR incident electron loses energy (to orbital electron) exact energy / 10.1((eV) needed to make the transition / move up to level 2 For second mark must imply exact energy
(ii) (use of $\left.E_{2}-E_{1}\right)=h f$ $-3.41-13.6=10.19 \checkmark$ energy of photon $=10.19 \times 1.6 \times 10^{-19}=1.63 \times 10^{-18}(\mathrm{~J})$ $6.63 \times 10^{-34} \times \mathrm{f}=1.63 \times 10^{-18}$ $f=2.46 \times 10^{15}(\mathrm{~Hz}) \vee$
(accept 2.5 but not 2.4)
CE from energy difference but not from energy conversion
(iii) $E k=1.7 \times 10^{-18}-1.63 \times 10^{-18} \checkmark=7.0 \times 10^{-20} \mathrm{~J} \checkmark$
(iv) energy required is $12.09 \mathrm{eV} / 1.9 \times 10^{-18} \checkmark$ energy of incident electron is only 10.63 eV / energy of electron less than this $\left(1.7 \times 10^{-18} \mathrm{~J}\right) \checkmark$

State and explain must have consistent units i.e. eV or J
(b) (i) Electrons return to lower levels by different routes / cascade / not straight to ground state \checkmark
(ii) $3 \checkmark$
$n=3$ to $n=1$ or $n=3$ to $n=2$ and $n=2$ to $n=1 \checkmark$
no CE from first mark

M4. (a) (i) when electrons/atoms are in their lowest/minimum energy (state) or most stable (state) they (are in their ground state)
(ii) in either case an electron receives (exactly the right amount of) energy excitation promotes an (orbital) electron to a higher energy/up a level ionisation occurs (when an electron receives enough energy) to leave the atom
(b) electrons occupy discrete energy levels and need to absorb an exact amount of/enough energy to move to a higher level photons need to have certain frequency to provide this energy or $\mathrm{e}=\mathrm{hf}$ energy required is the same for a particular atom or have different energy levels all energy of photon absorbed
in 1 to 1 interaction or clear a/the photon and an/the electrons
(c) energy $=13.6 \times 1.60 \times 10^{-19}=2.176 \times 10^{-18}(\mathrm{~J})$

$$
\begin{aligned}
& h f=2.176 \times 10^{-18} \\
& f=2.176 \times 10^{-18} \div 6.63 \times 10^{-34}=3.28 \times 10^{15} \mathrm{~Hz} \checkmark 3 \mathrm{sfs}
\end{aligned}
$$

M5. (a) (i) an electron/atom is at a higher level than the ground state (1) or electron jumped/moved up to another/higher level
(ii) electrons (or electric current) flow through the tube (1) and collide with orbiting/atomic electrons or mercury atoms (1) raising the electrons to a higher level (in the mercury atoms) (1)
(iii) photons emitted from mercury atoms are in the ultra violet (spectrum) or high energy photons (1)
these photons are absorbed by the powder or powder changes frequency/wavelength (1)
and the powder emits photons in the visible spectrum (1)
incident photons have a variety of different wavelengths (1)
$\max 3$
(b) (i) (use of $E=h f)$
$-0.26 \times 10^{-18}-0.59 \times 10^{-18}(1)=6.63 \times 10^{-34} \times f(1)$
$f=0.33 \times 10^{-18} /\left(6.63 \times 10^{-24}\right)=5.0 \times 10^{14}(\mathrm{~Hz})(1)$
(ii) one arrow between $\mathrm{n}=3$ and $\mathrm{n}=2$ (1) in correct direction (1)

